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PRINCIPAL NOTATION

A

Cf

f

f’

K

L

P

P+

Rx, RL

RO

U,v

U*

UT

x ,y

6

6*

cm
1-
‘m

n

nm

‘tr

K

Van Driest damping length parameter

local skin-friction coefficient

dimensionless stream function

u/ue

variable grid parameter

mod~fied mixing length, or reference length

pressure

dimensionless pressure-gradient parameter

Reynolds number, uex/v or ueL/v

Reynolds number, ue6/v

velocity components in the x- and y-directions, respectively

reference velocity

friction velocity (Tw/P)

Cartesian coordinates

parameter in the outer eddy-viscosity formula, see (2.8)

boundary-layer thickness

displacement thickness, see (2.5)

eddy viscosity

dimensionless eddy viscosity

transformed y-coordinate

transformed boundary-layer thickness

m

momentum thickness,
J

U/Ue(l –u/ue)dv

o

intermittence

Von Karman’s constant

v



u dynamic viscosity

v kinematic viscosity

P density

T shear stress

$ stream function

Subscripts

e outer edge of boundary layer

w wal1

m freestream conditions

()’ differentiation with respect to n
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1. INTRODUCTION

Boundary-layer calculations are usually performed for prescribed

boundary conditions which, for two-dimensional incompressible flows, may

be provided in the form

U(x,o) = o, V(x,o) = Vw(x), U(x,a) = Ue(x)

In some problems, however, the external velocity distribution is unknown and

can be determined in order to satisfy an alternative boundary condition, such

as prescribed displacement thickness, 6*(x), or the wall shear, TW(X).

These solutions are obtained with “inverse boundary-layer methods” and find

application in many practical problems. For example, the airfoils discussed

in a recent article by L+ebeck (1976) are designed on the principle that,

in certain regions of an airfoil flow, the deceleration results in values of

wall shear’stress close to zero. Other important applications of inverse

boundary-layer procedures occur in the calculation of duct flows such as those

discussed by Cebeci and Bradshaw (1977).

A particularly important application of inverse boundary-layer procedures

is their potential to calculate the properties of separating and reattaching

boundary-layer flows. It is well known that, for a prescribed external

velocity distribution, the boundary-layer equations are singular at separa-

tion: they are not singular, however, when the displacement thickness is

prescribed. This was demonstrated by Catherall and Mangler (1966) who solved

the laminar boundary-layer equations in the usual way until separation was

approached and then, by assuming a displacement-thickness distribution, cal-

culated the external-velocity distribution and local flow properties through

the recirculation region.

More recent investigations of the inverse boundary-layer method have been

reported, for example, by Klineberg and Steger (1974), Horton (1974), Carter

(1974,1975), Carter and Wornom (1975) and Williams (1975,1976), and have involved

solutions to the laminar boundary-layer equations with prescribed displacement-

thickness and shear-stress distributions in regions of negative shear stress.

(1.1)

The present report is concerned with incompressible turbulent boundary-

layer flows with and without separation. It represents a major extension to

1



the work described by Cebeci (1975a),which was concerned with compressible,

attached boundary-layer flows, and makes use of Keller’s (1970) two-point

finite-difference method to solve boundary-layer equations appropriate to

turbulent flow. The nonlinear eigenvalue approach of the earlier work was

found to be inappropriate to the separating boundary layers which are the

main concern of this report and an alternative-approach, based on the solu-

tion procedures of Cebeci and Keller (1972), has been used. The solutions,

which relate to attached and separating flows, were obtained with prescribed

distributions of displacement thickness.

The equations and boundary conditions are presented in the following section

together with the algebraic eddy-viscosity formulation. The succeeding sections

describe the solution method, referred to as the Mechul*-function method, and

these results and their implications. A brief statement of the more important

conclusions forms the final section.

*lit. unknown (Turk.)

2



2. BASIC EQUATIONS

2.1 ~

The conservation equations appropriate for steady two-dimensional

incompressible laminar and turbulent boundary layers may be written as

follows:

Continuity:

&J+av=o
ax ay

Momentum:

au 1 ~+ 1 a~~+v—=—– –—
u ax ay P dx p ay

Corresponding boundary conditions, for zero mass transfer, are:

y.() U,v=o

y-+. u + Ue(x)

(2.1)

(2.2)

(2.3)

(2.4)

With specified distributions p(x) or Ue(x), the equations and boundary

conditions represent the usual statement of the two-dimensional boundary-layer

problem for laminar and turbulent flows. For convenience, we shall call it

the standard problem.

The inverse problem, which we consider here, is a flow with specified

displacement thickness, 6*(x), distribution. Here 6*(x) is defined by

(2.5)

2.2 Turbulence Model

The solution of the equations in section 2.1 requires a closure assump-

tion for the Reynolds shear stress, -pu’v’. In our study we use the eddy-

viscosity concept



au
-pu’v’ = psm% (2.6)

and prescribe Em in the manner recommended by Cebeci and Smith (1974) and

shown by them to represent various boundary-layer conditions such as those at

high- and low-Reynolds numbers, transition flows, etc. According to this

formulation, the turbulent boundary layer is regarded as a composite layer

consisting of inner and outer regions with different eddy-viscosity formulas

for each region.

Here

A=26~u~1

Tw 1/2

()
uT=~,

In the inner region the eddy viscosity is defined by

(~m)i ‘L2#~tr

L = 0.4Y[1 –exp(-y/A)]

VUe due
9 N= (1 –11.8p+)1’2 , p+’— U3 T

t~l-exp[-G(x-xtr)/~]

G = 8.35 X lo-4(U:/v2) R-’-34
‘tr

In the outer region the eddy viscosity is given by

m

(Cm)o = a 1(Ue – u)dy

o

where

‘tr

a = 0.0168[1.55/(1 + II)]

1’2–0.298z1)]11= 0.55[1 –exp(-0.243z1

(2.7)

(2.8)

(2.9)

‘1 = Re/425 –1

Ued
Ro=—

v

4



2.3 Formulation of the Inverse Problems

In our approach to inverse boundary-layer problems, we use the stream

function concept and write the continuity and momentum equations as a third-

order system in dimensionless quantities defined by

(2.10)
Then it can be shown that (2.1) and (2.2) can be written as

(b$’’)’–@=~’t”~”~ (2.11)
dy ax ax

Here primes denote differentiation with respect to ~ and b is given by:

b
+

=l+e; , :m=#v (2.12)

The boundary conditions (2.5) become

T =0 i-J= iJ’=o (2.13a)

y=ye $’=ie 9 4 = ie[Fe +p%dl (i.13b)

where the subscript e denotes the boundary-layer edge and

(2.14)6*(X)
Ue

T*(x)=_ > ‘ie=~
o

The relation between me and ~ is given by Euler’s equation which, in terms

of dimensionless quantities, can be written as

(2.15)

Two approaches to the solution of the system (2.11), (2.13) and (2.15)

were attempted. In the first approach, which we call the “nonlinear eigen-

value method,” the pressure was treated, as an eigenvalue parameter. The

second approach regarded the pressure as an unknown function; we shall refer

to this method as the “Mechul-function method.” The nonlinear eigenvalue

5



method is described in detail in Cebeci (1975a)and only a brief description

is presented here. The Mechul-function method, which proved to be more

appropriate to flows with separation, is described in detail in section 3.

For flows with negative wall shear, it is necessary to make approxi-

mations to the governing equations to continue the calculations past the

separation point. Here we use the approximation first suggested by

Reyhner and Flugge-Lotz (1968). This approximation referred to as FLARE

by Williams (1975), neglects the u(au/ax) term in the region of negative

u-velocity. All inverse boundary-layer procedures, including the ones des-

cribed here, use this approximation for regions of separated flow. Once a

solution has been obtained with this approximation, however, the assumption

can be relaxed to allow solutions of the complete boundary-layer equations.

This relaxation of the assumption is effected with a forward and backward

difference procedure, as described in section 3.3.

2.3.1 Nonlinear Eigenvalue Method

Let us assume that at x = X. we are given the initial velocity profiles

and we seek a solution of the system (2.11) subject to (2.13). In the nonlinear

eigenvalue method, me is assumed and with (2.15) we then obtain a solution of

(2.11) subject to (2.13a) and to the first relation in (2.13b), namely I,’=~e

at y = ye. Solutions were obtained by Cebeci (1975a)for compressible flows,

in which the governing equations were solved in transformed variables rather

than the physical variables considered here. For the solution we can compute

F* (which we shall denote by ~~) from (2.5) which, in terms of stream

function and dimensionless quantities, can be written as

Tc(x) = + ‘ye- ‘Je/”e)
L

(2.16)

Recalling that the desired value for the displacement thickness is F*(x), we

form:

(2.17)

and seek tie such that +[tie(x)] ~ O.



To solve O[ie(x)]= O, --(o)(x)we use Newton’s method. With an estimate Ue
<V)(X) by settin9of the external velocity we define the sequence Ue

$+1 )(x)=$)- ‘[”:(x)] (2.18)
a+[u:(x)l /aie

The derivative of o with respect to tie can be obtained from (2.17) by

making use of the relation given by (2.16). This gives

(2.19)

One

and

the

iie

is,

(o)(x) is assumedstep of the iteration may be summarized as follows: Ue

a solution of the standard problem obtained. From this result and from

desired value of T*(x), @ is found from (2.17). The next value of

can then be calculated from (2.18) provided that &$/a~e is known. That

obtained by solving a set of variational equations as described in Cebeci

(1976). The iteration process is repeated until

~(v+l)(x) – Ue+V)(x) <6,e (2.20)

where 61 is a small error tolerance.

7



3. MECHUL FUNCTION METHOD

3.1 Numerical Formulation

In the Mechul function method, we solve the system (2.11), (2.13) with

the numerical method of Keller (1970). This is an efficient accurate two-

point finite-difference method that has been used extensively by Cebeci for

two- and three-dimensional flows (see, for example, Cebeci (1974, 1975b)).

According to this method we introduce new dependent variables u(~,~), v(x,y)
——

so that (2.11) can be written as a first-order system. With the function ~

treated as unknown and with the help of they-momentum equation (-a~/aY= O)

we can write (2.11) as

V’=u (3.la)

U’=v (3.lb)

P’ ‘o (3.lC)

Similarly (2.13) becomes

y.() 1).u.()

Y = ye; u = Ue, Ve = ‘e[Ye –~T*(x)l

(3.ld)

(3.2a)

(3.2b)

Here, for convenience, we have dropped the bars on x, y, p and Ue.

On the rectangular net shown in figure 1, we denote the node points by

‘o = o, ‘n
+k

= ‘n-1 n
n=l,2, ....N (3.3)

Y. = o, ‘J ‘yj_l + hj j = 1, 2, .... J: YJ = Ye

Nonuniform net spacings kn and hj are used. The quantities (v, u, v, p)

at points (xn, yj ) of the net are approximated by net functions denoted by

($ u;, v;, p;). We also employ the notation for points and quantities midway

between net points and for any net function q;:

8



Y

#

Yj-1

‘j

I ‘n-l ‘n-l/2 ‘n

Figure 1. Net rectangle for difference approximations.

(3.4)

The finite-difference forms of equations (3.la,b,c), written for the midpoint

(xn,Yj-1/2) of the segment P1P2 shown in figure 1, are

nn
‘j ‘Vj-l = n

hj ‘j-l/2

n
‘j – ‘~-l = n

‘j
‘j-l/2

P; – P;-,

hj ‘0

(3.5a)

(3.5b)

(3.5C)

Similarly (3.ld) is approximated by centering about the midpoint (xn_1,2,

Yj-1/2) of the rectangle P1P2P3P4 to obtain

b~v; –b!j-lv~-l
+ an[(o”);-1/2 + “::;/2+;-,,2 - (uZ); ,,2- ~q-;,2v;_,,2]

‘j

Pn-l– 2un[p~_l/2 – j-1/2, = ~n-l
J-1/2 (3.5d)

CJ



Here

n-l.=_ (bv);-l - (bv)~j~

‘j-l/2
‘j

1=
‘nx

n – ‘n-1

(3.6a)+ an[(+v);:j/2 –(U2);+21

(3.6b)

Similarly the boundary conditions (3.2) and the relation (2.15) become

74;=0, U:=()* u:= 4’ J = ug[Ye– F*(x)l (3.7)

(U:)n n-~ (U:)n-’
pn+T. P +~ (3.8)

3.2 Solution of the Difference Equations

If we assume (IIJ~-l, u~-l , v~-l, p~-l) to be known for O ~ j ~ J,

then (3.5) for 1 ~j &J-1 and the boundary conditions (3.7) yield a non-

linear algebraic system of 4J+4 equations with the same number of unknowns

(4$U;9V$9 Pn). To solve the system we use Newton’s method. We introduce
(v~, u(~), “(~), Pjv)j viterates [$j j j =0,1,2, . . . . with initial values

~(o)=(), Ujo) = (), “(o) = “n-l
o 0

p(o) = pn-l
0’0 0 j =0

+0) = ~;-l , U(0) = Un-l, (0) = vn-l, p$”) = P~-l 1 ~ j < J-1 (3.9)
j j j ‘j j —

(0) _ n-1
$J , u(o)‘+J J

= Un-l vJO) = v~-l , p~O) = p~-l j = J
e’

For the higher-order iterates we set

(~+1)
= +(v) + ,+jv) (V+l) = (v) + auj~) , $+1 ) = Vjv) + dvj~)

‘j ~“’ ‘j ‘j

p~v+l) = p(v) + ~p~v)
j

(3.10)

Then we insert these expressions in place of [4., u., v., pj
(v) 1

in (3.5) and

6U(:), ~v~vq, 6Pjv)]. This proceduredrop the terms that are quadratic in [~~j , j

Yleids the following linear system:

10



6$ j – ~$j.1 + (auj + ~“j-l
h.

6Uj – d“j-l ‘#(~vj + 6V -
J-1

6Pj - 6Pj_l = (rq)j-l

(s, )jdvj + (Sz)jdvj-l + (s3)j6*j + (Sq)jd$j-l +

+ (s6)j6uj-1 + (S~)j6Pj +

for j =1,2, ● **, J. Here for convenience we

v and n, and have reordered the equations so

z?.
r-

) = (.r,)j

r-
3S
-w
G?-

) = (r~)j-, (3.11)’ :
r“,.

(siJjduj ‘“(s6)j6uj-l

(s~)j~Pj-l = (Y’z)j

have dropped the superscripts

that the

singular. (For details, see Cebeci and Bradshaw, 1977. )

(rk)j (k = 1 to 4) are:

(r,)j =

(r3)j-1

(rq)j-,

(r~)j =

‘j”j-~/2 – $j + $j-,

= hjvj-1/2 ‘Uj + ‘j-1

= o

A. matrix is not

The coefficients

~n-1 (bv)j - (bv)j-l
+ v;-j,2~j ,,2-+ O!n [(*v)j-~/2 - .j-1/2 –

‘j

(3.12)

– (u2)j-, /2 - P;-],2)– *;:;/2v5-l/2J – 2~n(pj_l/2 -

The coefficients (sk)j (k = 1 to 7) of the difference momentum equation

hre:

%
(s~)j = ~ (Vj + V;:],2) (3.13)

%
(S4)j = ~ (Vj-l + V;:],*)



The boundary conditions (3.7) become

6V0 = (rl)o =0 Nlo = (r2)o = O (3.14)

6+J ‘[YJ ‘~T*(x)]6”J = (rs)J ‘~J + UJ(YJ – ~~’)

(u~)n-l - (u~)n + ~n-l _ ~n
(3.14)

UJ6UJ + 6PJ = (r4)J ~
2 J J

We use the block elimination method discussed by Isaacson and Keller (1966)

to solve the linear system. According to this method, the linear system is

written in the form

A}j=~j (3.15)

Here

i~)o-
(:),
.
.

(~)j

●

.

(~)J-1

(r)J

‘o co

‘J ‘J

6%0

$1
●

.

.

& 3.
.
.

$J-1

tJ
+

(3.16)

12



lhe matrices Aj, Bj> Cj are 4 x 4 matrices which are given by

A.=[:-;/2~1 $=1~-;,,! OsjsJ-l

10001
1 L

0001
J

(3.17)

Bj =

L00 00 J Lo 0 0 -1 J

3.3 FLARE Approximation and DUIT Procedures

As previously mentioned, flows with negative wall shear require the use

of the FLARE approximation in the region of reversed flow. According to this
n-1

approximation, u; and u.
J.

are-set-equal to zero in the region of negative u..
J

Once a solution is obtained with this approximation, more accurate calculations

can be obtained without the FLARE approximation by using a forward and back-

ward difference scheme. In the region of reverse flow (uj sO), we write the

difference approximations of (3.ld) for the midpoint (xn+l/2,yj-1/2) of the

rectangle P1P2P~P~ (see figure 2) to get

(bv)!j– (bv);-l
–61(*v);-l/2+ &/2$;-l/2 - (U2);-,,2 –v;:]/&l/2 I

‘j

Here

n+l
(bv)!j+~- (bv)~~]

‘j-l/2 = –
‘j

~= 1

‘n+l ‘Xn

13



Y

b,

‘4 ‘1 Pi
.Yj ‘ .

4
-l,yj_.,,2 —— .— —+ >— ——

.Yj
P; P;

* xI
‘n-1 ‘n-l/2 ‘n ‘n+l/2 ‘n+l

Fiaure 2. Net rectangle for difference approximations for the DUIT procedure.

With this procedure, the calculations are repeated, starting at the x-station

where the calculations first indicated reverse flow and are continued to the

final x-station, until the solutions do not indicate any changes. This pro-

cedure, referred to as DUIT (downstream upstream iteration) by Williams (1975),

usually gives converged solutions with two or three DUITS.

3.4 C&hrnentson”the Solution Algorithm

The solution of the governing equations given by (2.1) to (2.4) or (2.11)

and (2.13), requires initial conditions which can be obtained in the trans-

formed variables,

n=~y, += @f(x,ll)

Equations (2.1) to (2.4) become:

(bfll)’+% ff” + m[l –(f ’)2] = x f’ &– fll~
ax (3.21)

where primes tndicate differentiation with respect to n and

(3.20)

m=

Equation (3.21) is subject to the fol’

x due
.—
Ue dx

owing boundary conditions:

(3.22)
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n =0 f= f’=o q+qm f’+1 (3.23)

Initial conditions were obtained by solving the governing equations for the

standard problem to a location upstream of separation.

The present method has been developed to allow nonuniform net spacings in

the streamwise direction and across the boundary layer. In the latter case, a

geometric progression has been used with the property that the ratio of lengths

of any two adjacent intervals is a constant; that is, h. = Kh.
J-1”

The dis-

tance to the j-th line is given by the following formula!

‘j = hl(Kj –l)/(K–l) K>l (3.24)

There are two parameters: ‘1‘ the length of the first An step, and K,

the ratio of two successive steps. The total number of points J can be

calculated from the expression,

ln[l + (K– 1)(n~/hl )1
J =

in K
(3.25)

For further details, see Cebeci and Bradshaw (1977).
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4. RESULTS

To test the Mechul function method calculations were performed for

laminar and turbulent boundary layers with and without separation, and

compared with the results of previous numerical solutions for laminar flows

and with experimental data for turbulent flows. The latter comparisons were

made for a number of attached flows and only for one separated flow.

4.1 Results for Laminar Flows with Separation

For laminar flows with separation we have considered four separate flows

which allow the displacement thickness distribution to be specified. These

include the laminar separated flows of Williams (1976), Carter (1975) and

Briley (1971). In the last case, the free-stream boundary condition corres-

ponded to a linearly decreasing external velocity distribution followed by a

constant velocity and resulted in separation and reattachment. Figure 3 allows

a comparison of values of local skin-friction coefficient cf ~ calculated

with the present method with those obtained by Briley from the steady, two-

dimensional form of the Navier-Stokes equations. Here cf is defined by

‘w 24” (o)=— —=
Cf

1/2 ~u: ~
(4.1)

and cf~ represents 24’’(0). These calculations were made for the displace-

ment thickness distribution (see in figure 3) deduced from the Navier-Stokes

solutions. In general, the agreement is very good and the small discrepancy

may be associated with the difficulty of reading the input F*(x) distribution

from the graph presented by Briley. The Navier-Stokes solutions were

obtained for RL = 2.08 x 104 and required 45 minutes on a UNIVAC1108. The

results obtained by the Mechul function approach required approximately

10 seconds on a CDC-6600 computer.

We next consider the two laminar flows with separation and reattachment

computed by Carter (1975). These flows have displacement-thickness distribu-

tions 6*(x) given by

16
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+
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Figure 3. Calculated local skin-friction coefficient distribution for
separating and reattaching flow computed by Briley (1971);

1.7208&

al +a2(x– xl) +a3(x– x1)2+

x, +=3(X–X2) 2 +:4(X–X2)3

I,o:x:x,

a4(x –xl)
3

‘1
:X2X

2

‘2 LXLX
3

(4.2)
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with

al
= 1.7208@

a2 = (0.5)(1.7208)/@

a3 = (0.5/A1)[6/A1 (d;ax – a,) – 4a2]

a4 = 2/A~ [A1/2 a2–(6~ax–al)I

i, = l%ax

;3 = –1/A:[3(6~ax – 85) + A28~’]

(4.3)

q =X2–X,, A2 = X3–X2, Xl = 1.065, X2 = 1.35, X3 = 1.884

The first flow, referred to as Case A, has d~ay = 5.6, and the second flow

referred to as Case B, has d~ax = 8.6. The two displacement thickness

distributions are shown in Figures 5 and 6.

Comparison of present results with those of Carter (1975) is shown in

Figures 4, 5, and 6. The present calculations were started at x = O by

solving the governing equations in transformed variables for the standard

problem and then at x = 1 the Mechul-function method was used to solve the

inverse problem with the equations expressed in physical variables and with

the FLARE approximations. The procedure of improving the FLARE results by

the DUIT procedure is currently under examination.

As can be seen, the present results agree well with those of Carter

which made use of the FLARE approximations and the DUIT procedure. Our

skin-friction results are in better agreement with Carter’s results obtained

by the FLARE procedure. His FLARE approximation was slightly different from

that considered here and may account for the disagreement with the present

results. The computer time associated with the results was again of the

order of 10s on a CDC 6600. At almost all x-stations the convergence rate

was quadratic and required only two or three iterations, including regions

of separated flow.

18



o

IA-1 %
w

.
ml

al
.

.

-

a
.

.

*
.

+
x

-/.

aJ
W

8

4“



o.
cd

m
.

F

x

~.— _l__.L-.
0 In rJ

,~.—--–––+”

C2

0
.

c-d

03
.

1-

-+ u

-1-
+’

0

a
.

.x

3-
.

J
.

,

>
. {.——— .,——... —- .J

C2
0
r 0

N

0“ G
1

G
I

s
c
w-
+
2

s
c

“1
c

.
u,

+
L)

20



o
.

N

M

m
.7

c
.

x

e’
.

l--

cd
.

F

0.
0 c) 0 0 0 c 0. . . 0-.
b

. .
m If-) e“ .

m ml ?

z
n

z

c
w-

‘g
a

3
WI

.
ccl

E’
3
m

21



Figure 7 shows the results for another laminar flow, with prescribed

displacement thickness distribution, previously computed by Williams (1976).

The 6*-distribution is given by

6*= 0.6479{1 + 9 exp [-0.0625(x–14)2]} (4.4)

In this case the flow starts at the stagnation-point and separates at approx-

imately x = 10. Both calculations were made by the FLARE approximation. As

in the previous cases, the solutions converged quadratically requiring only

two or three iterations, including regions of separated flow.

4.2 Results for Turbulent Flows

Two separate turbulent flows have been considered. These flows did not

have flow separation and were computed with the eigenvalue and the Mechul-

function methods to check the predictions of both methods for attaching flows.

The two sets of results were identical. The application of the method for

turbulent flows with separation is currently under examination.

The two attached turbulent flows were those measured by Schubauer and

Spangenberg (see Coles and Hirst, 1969) and labeled as 4400 and 4800 at the

1968 Stanford Conference. Flow 4400 has a strong adverse pressure gradient

and flow 4800 has a mild adverse pressure gradient. Figures 8 and 9 present

the results for these two flows. The calculations were made first by using

the standard procedure: in this case the external velocity distribution was

specified and the boundary-layer parameters were computed. Next, the calcula-

tions were made with both of the inverse procedures: the measured displacement

thickness distribution was specified and the external velocity distribution

computed along with other boundary-layer parameters. As the results show,

the agreement with experiment is very good; the difference between calculated

and experimental velocity distributions is small, and the boundary-layer

parameters computed by standard and inverse procedures agree with each other.
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Figure 8. Results for flow 4400. (Inverse results were obtained by using
both the nonlinear eigenvalue method and the Mechul-function
method and they are identical. )
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Figure 9. Results for flow 4800. (Inverse results were obtained by using
both the nonlinear eigenvalue method and the Mechul-function
method and they are identical.
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5. CONCLUDING REMARKS

A numerical method for computing two-dimensiona”

and turbulent boundary layers for separated flows is

incompressible laminar

presented. The Reynolds

shear stress term is modeled by using the algebraic eddy-viscosity formulas

developed by the author. Two separate approaches for solving the governing

equations are investigated. The first approach, which we call the “nonlinear

eigenvalue method” treats the pressure as an eigenvalue parameter and works

with either physical or transformed variables. The second approach treats

the pressure as an unknown function and seeks the solution of the governing

equations in physical variables. This approach, which we call the “?flechul

function scheme” works very well for both attached and separated flows while

the first approach only works for attached flows.

Comparisons and calculated results for both laminar and turbulent flows

show the Mechul function method provides a very useful tool for computing the

separated flows with the FLARE approximation. The computed results agree well

with the available numerical and experimental results and show no signs of

numerical problems in regions of negative wall shear.

Acknowledgments

The author is greatly indebted to many useful discussions with

Mr. P. G. Williams in the development of this method.

28



c?
z?
e
‘l-

6. REFERENCES
*.
6.
G.
m.

Briley, W.R. (1971) A Numerical Study of Laminar Separation Bubbles Using
-r
h.
l-?

the Navier-Stokes Equations. J. Fluid Mech., 47 (4) 713-736.
~:

—

Carter, J.E. (1974) Solutions for Laminar Boundary Layers with Separation and

Reattachment. AIAA Paper No. 74-583.

Carter, J.E. (1975) Inverse Solutions for Laminar Boundary-Layer Flows with

Separation and Reattachment. NASA TR R-447.

Carter, J.E. and Wornam, S.F. (1975) A Forward Marching Procedure for Separated

Boundary-Layer Flows. AIAA J., 13 (8) 1101-1103.—

Catherally D. and Mangler, K.W. (1966) The Integration of the Two-Dimensional

Laminar Boundary-Layer Equations Past the Point of Vanishing Skin

Friction. J. Fluid Mech., 26 (1) 163-182.—

Cebeci, T. (1974) Calculation of Three-Dimensional Boundary Layers. I. Swept

Infinite Cylinders and Small Cross-Flow. AIAA J., ~, 779-786.

Cebeci, T. (1975a) An Inverse Boundary-Layer Method for Compressible Laminar and

Turbulent Flows. Calif. State Univ. at Long Beach Rept. No. TR-75-1.

Cebeci, T. (1975b) Calculation of Three-Dimensional Boundary Layers. II. Three-

Dimensional Flows in Cartesian Coordinates. AIAA J., 13, 1056-1064.—

Cebeci, T. and Bradshaw, P. (1977) Momentum Transfer in Boundary Layers.

McGraw-Hill/Hemisphere, Washington D.C.

Cebeci, T. and Smith, A.M.O. (1974) Analysis of Turbulent Boundary Layers.

Academic Press, New York.

Coles, D.E. and Hirst, E.A. (1969) Proceedings of Computation of Turbulent

Boundary Layers, 1968 AFOSR-IFP-Stanford Conf., II. Thermosciences Div.,

Stanford Univ., Stanford Calif.

Horton, H.P. (1974) Separating Laminar Boundary Layers with Prescribed Wall

Shear. AIM J., 12 (12) 1772-1774.—

Isaacson, E. and Keller, H.B. (1966) Analysis of Numerical Methods. Wiley,

New York.

Keller, H.B. (1970) A New Difference Scheme for Parabolic Problems. in

Numerical Solution of Partial Differential Equations (cd. J. Br=ble),

II, Academic Press, New York.

29



Keller, H.B. and Cebeci, T. (1972) Accurate Numerical Methods for Boundary-

Layer Flows. II. Two-Dimensional Turbulent Flows. AIAA J., 10 (9),—

1193-12,00.

Klineberg, J.M. and Steger, J.L. (1974) On Laminar Bounda’ry-Layer Separation.

AIAA Paper No. 74-94, Jan/Feb.

Kuhn, G.D. and Nielsen, J.N. (1973) Prediction of Turbulent Separated Boundary

Layers. AIAA J., 12 (7) 881-882.—

Liebeck, R. H. (1976) On the Design of Subsonic Airfoils for High Lift.

AIAA Paper No. 76-6463.

Reyhner, T.A. and Flugge-Lotz, I. (1968) The Interaction of a Shock Wave with

a Laminar Boundary Layer. Int. J. Non-Linear Mech., 3(2) 173-199.

Williams, P.G. (1975) A Reverse Flow Computation in the Theory of Self-

Induced Separation. Proceedings of the Fourth International Conf. on

Numerical Methods in Fluid Dynamics. Vol. 35 of Lecture Notes in Physics,

Richtmyer, R.D. (cd), Springer-Verlag, 445-451.

Williams, P.G. (1976) Private communication.


